Гибриды полученные путем отдаленной гибридизации бесплодны так как у них

Отдаленная гибридизация

Гибриды полученные путем отдаленной гибридизации бесплодны так как у них

Отдаленная гибридизация — такие скрещивания, когда подобраны пары относятся к разным видам или родам, то есть удаленными не в географическом, а в семейном отношении. В соответствии с этим различают межвидовые (пшеница мягкая × пшеница твердая) и межродовые (пшеница × рожь) скрещивания.

Отдаленная гибридизация играет особую роль в эволюции и селекции.

Именно благодаря ей происходит процесс возникновения в природных условиях и использование в практической деятельности вищеплення новых экземпляров, которые ранее не существовали и которые совмещают признаки различных видов или родов за счет перекомбинации наследственного материала.

Первые опыты

Первые опыты по отдаленной гибридизации растений были начаты в 1756 г. И. Г.

Кёльрёйтером, который опубликовал результаты исследований в 1772 по скрещиванию виргинского и перувианського видов табака, от которых он получил гибриды, которые удачно сочетали скороспелость, высокую урожайность и ценные качества табака обоих родителей.

Через стерильность первого поколения созданы гибриды не нашли широкого применения, так как необходимо было ежегодно проводить такие скрещивания с целью получения гибридных семян для посева.

С тех пор прошло уже более 240 лет, но интерес к получению новых растений с помощью отдаленной гибридизации, несмотря на то, что успехи от применения этого метода еще не многочисленные, не уменьшается, а значительно возрастает и приобретает все большие масштабы, усиливается его значимость.

Значение отдаленной гибридизации

Значение отдаленной гибридизации в создании нового исходного материала особенно велико на современном этапе селекционной работы, когда мы имеем выдающиеся успехи в деле создания очень ценных сортов различных сельскохозяйственных культур.

Для дальнейшего прогресса в выведении новых сортов, имеющих комплекс биологических, хозяйственно-полезных и корреляционно связанных с ними морфологических признаков, очень часто возникает острая необходимость выйти за пределы вида для заимствования необходимых свойств от других видов.

Например, создание иммунных сортов картофеля к фитофторозу, вирусных заболеваний, рака, нематоды, колорадского жука за счет внутривидовой гибридизации практически невозможно, так как все многообразие сортов и форм культурного вида Solanum tuberosum не имеет устойчивости к этим заболеваниям и вредителям. Но среди других видов рода картофеля такие формы есть.

К ним прежде всего относятся S. demissum, S. acaule, S. andigenum, S. vernei, S. maglea и некоторые другие.

За прошедший период, особенно в XX веке, по теории и практике отдаленной гибридизации накоплен богатый экспериментальный материал, выяснено неиспользованные возможности ее более широкого применения, определены объективные трудности ее осуществления, выявлены основные причины существующих генетических и других биологических барьеров, разработан ряд методов преодоления нескрещуваности видов между собой и бесплодия первого поколения отдаленных гибридов.

Вклад

Большой вклад в теорию и практику этого вопроса внесли такие ученые как И. В. Мичурин (методы преодоления нескрещуваности плодово-ягодных культур), Г. Д. Карпеченко (плодовиты капустяно- редьки гибриды), Н. В. Цицина (сорта пшенично- пырейные гибридов), А. Ф. Шулиндин (первые сорта ржано-пшеничных Амфидиплоид) и другие.

Проблемы

При проведении отдаленной гибридизации селекционеру постоянно приходится сталкиваться с тремя основными проблемами: нескрещуванисть генетически отдаленных видов, непохожесть гибридных семян, бесплодие полученных гибридов.

Эти проблемы возникают в связи с тем, что:

  • Пыльца не прорастает на пестику другого вида;
  • Пыльца прорастает, но пыльцевые трубки растут медленно и не достигают зародышевого мешка
  • Пыльцевые трубки достигают зародышевого мешка, но оплодотворения не происходит;
  • Оплодотворение происходит, но зародыш прекращает свое развитие в стадии нескольких клеток;
  • Зародыш при начальном нормальному развитию прекращает свое формирование, образуются непохоже семян;
  • При физиологической несоответствия цитоплазмы и чужеродных хромосом, отсутствия четности хромосом скрещивающихся видов конъюгация не происходит, мейоз нарушается, половые клетки не образуются и гибридные растения остаются бесплодными.

Преодоление нескрещуваности

В деле преодоления нескрещуваности подобранных пар видов для гибридизации или представителей различных родов в селекционной практике используются Мичуринск методы смеси пыльцы, предварительного вегетативного сближения, трансплантации частей столбика с рыльцем отца цветка, укорочение колонки, метод посредника, реципрокных скрещиваний, нанесенные биостимуляторов на рыльце пестика.

В повышении эффективности отдаленной гибридизации большое значение имеет применение более новых методов, с помощью которых осуществляется предварительный перевод одного из компонентов на другой уровень плоидности с помощью полиплоидизации или деполиплоидизации. В результате этого оба родителя будут иметь одинаковое число хромосом и лучше скрещиваются между собой.

В тех случаях, когда оплодотворение происходит, но через несколько дней развитие зародыша прекращается, положительные результаты может дать метод эмбриокультуры, при которой в передкритичний момент после оплодотворения семяпочка извлекается из завязи и трансплантируются на питательную среду in vitro.

Этот метод целесообразно применять и в том случае, когда семена формируются полностью, но оказываются непохожими.

Преодоление бесплодия

Для преодоления бесплодия отдаленных гибридов первого поколения наиболее широко прибегают к обратным скрещиваний с одним из родителей или опыления пыльцой других видов. Успех обеспечивается в том случае, когда стерильность гибридов проявляется только по мужской части.

В большинстве же случаев преодоления этих трудностей осуществляется через удвоение числа хромосом гибрида первого поколения к фазе формирования генеративных органов. В этом случае восстанавливается парность гомологичных хромосом родительских видов, благодаря чему мейоз и весь процесс гаметогенеза у гибрида проходит более благополучно и делает его плодотворным.

Плодовитые гибриды могут возникать и в том случае, когда при оплодотворении встречаются единичные нередуковани гаметы. При этом образуются естественные плодовиты амфидиплоиды (Аллополиплоидия). Заслуживает внимания и новый метод, разработанный в Белорусском НИИ земледелия и кормов И. А.

Гордеем, когда для получения тритикале, например, используются ценные сорта тетраплоидной ржи и полиплоидизовани растения мягкой, твердой или других видов пшеницы. В этом случае в генотипе гибрида объединяются сразу полные геномы обоих родителей, позволяет создавать полноценные фертильные растения.

Для растений, размножающихся вегетативно, бесплодие гибридов не имеет существенного значения, ведь их размножения для получения урожая осуществляется клубнями, луковицами, корневищами, отводками, черенками и другими органами и частями полученных гибридных растений.

С помощью отдаленной гибридизации с гибридного материала различных скрещиваний в мировой селекционной практике достигнуты значительные успехи по целому ряду сельскохозяйственных культур.

Исключительно убедительными примерами эволюционной деятельности человека является создание новой зерновой культуры тритикале на основе ржано-пшеничных гибридов. При скрещивании разных видов пшеницы с рожью через полиплоидизации создан плодовиты ржано-пшеничные плодовиты аллополиплоиды (амфидиплоиды).

В результате гибридизации топинамбура с подсолнечником в Украине и на Северном Кавказе создан так называемый тописоняшник, что имеет признаки обоих родителей с проявлением высокой степени гетерозиса по урожайности клубней и зеленой массы. Благодаря вегетативному размножению этих гибридов гетерозис передается всем последующим поколениям размножающихся клонов.

Более 250 сортов картофеля при селекции на устойчивость к вирусам, нематод, рака, фитофторы, колорадского жука, пониженных температур создан благодаря использованию многих диких видов этого весьма полиморфного рода (2n = 24, 36, 48, 60, 72, 96).

Интересные данные по межвидовой гибридизации томата является в Болгарии, Италии, Нидерландах, США. Наибольшую ценность в качестве доноров устойчивости к фитофторозу и бурой пятнистости имеют томат смородинолистний и томат волосистый соответственно.

В последнее время успешно решается проблема получения плодовитого гибрида между пшеницей и ячменем, в результате чего получен новый вид зерновой растения под названием Tritordeum.

Есть примеры успешного применения отдаленной гибридизации в селекции табака, махорки и других культур.

Исключительно важную роль в дальнейшем совершенствовании и повышении эффективности отдаленной гибридизации должна сыграть биотехнология.

С помощью ее методов культуры клеток и тканей возможна разработка способов изъятия из завязей оплодотворенных семяпочек и доращивания их на искусственном субстрате до получения гибридной растения, которая не может возникнуть обычным путем, так как во многих случаях через несколько дней после оплодотворения зав ' язь с оплодотворенной семяпочкой отмирает.

В последние годы доказана возможность получения удаленных гибридов путем соматической гибридизации при слиянии клеток разных видов после их освобождения от клеточных оболочек с последующим получением каллуса, его дифференциацией к образованию корней, листьев, стеблей и целых растений.

Примеры растительных гибридов

  • × Fatshedera lizei, гибрид между Hedera helix и Fatsia japonica
  • × Heucherella, гибридный род между Heuchera и Tiarella
  • × Philageria veitchii гибрид между Lapageria rosea и Philesia magellanica
  • Тритикале
  • × Urceocharis, гибрид между Eucharis и Urceolina
  • Dianthus × allwoodii (Dianthus caryophyllus × Dianthus plumarius)
  • Логанова ягода Rubus × loganobaccus, гибрид между малинный Rubus idaeus и ежевикой Rubus ursinus
  • Лондонский платан (Platanus orientalis × Platanus occidentalis)
  • Mагнолия × alba (Magnolia champaca × Magnolia montana)
  • Перечная мята, гибрид между мятой колосистой и мятой водяной
  • Quercus × warei (Quercus robur × Quercus bicolor) 'Nadler «(в США известен под торговой маркой Kindred Spirit гибридный дуб)
  • Танжело, гибрид оранжевого мандарина и помело, который мог быть созданным в Азии 3500 лет назад
  • Грейпфрут, гибрид между помело и ямайским сладким апельсином

Гибриды млекопитающих

  • Гибриды Equid
    • Ил, гибрид самки лошади и самца осла.
    • Лошак, помесь между ослицей и самцом коня. Есть много примеров реципроктных гибридов между илом и жеребенок.
    • Зеброиды
      • Зидонк или Зонка, гибрид зебра / осел.
      • Зорзи, гибрид зебра / лошадь
      • Зоне или Зетланд, гибрид зебра / пони («зоне» является общим термином, «Зетланд» специальная название гибрида пони шотландской породы с зеброй)
    • Гибридный осел, помесь осла и онагра, или Азиатский дикий осел.
  • Гибриды Bovid
    • ДЗО, со или яков; помесь домашних коровы / быка и какая.
    • Бифало, помесь американского бизона и домашней коровы.
    • Зуброн, гибрид между зубром и домашней коровой.
  • Гибриды овцы-козы — помесь овец и коз, принадлежащих к разным родам.
  • Гибриды Ursid, такие как гибрид гризли-белый медведь. Известны случаи скрещивания между черными медведями, бурыми медведями, и белыми медведями.
  • Гибриды Felid
    • Саванна кошка — гибрид между сервала и домашней кошкой
    • Гибрид между бенгальским тигром и амурским тигром является примером внутришньовидового гибрида. Это же касается индокитайского тигра, суматранского тигра и др.
    • Пумапард — гибрид между кугуаром и леопардом.
    • ЛИГЕР и тиглоны (гибриды между львом и тигром) и другие гибриды пантер такие как лиджагулеп. Существуют гибриды между такими видами как рысь, рысь рыжая, леопард, сервал и тому подобное.
      • Лилигеры — гибрид между самцом льва и ЛИГЕР.
    • Бенгальский кот, гибрид между азиатским леопардовым котом и домашней кошкой — один из многих гибридов между домашней кошкой и дикими видами кошек. Домашняя кошка, африканский дикий кот и европейский дикий кот могут считаться различными популяциями одного и того же вида (Felis silvestris), что делает такие скрещивания никак гибридами.
  • Фертильные гибриды собачьих имеют место между койотами, волками, динго, шакалами и домашними собаками.
  • Гибриды между черными и белыми носорогами также существуют.
  • Кама — гибрид между верблюдом и ламой — пример межродового гибрида.
  • Вольфин — фертильный, но очень редкий пример скрещивания между касаткой афалиной.
  • Гибриды Homininae
    • Гибриды современных людей с по крайней мере с двумя «видами» ископаемых людей: неандертальцы и Денисовский человек

Источник: https://info-farm.ru/alphabet_index/o/otdalennaya-gibridizaciya.html

Отдаленная гибридизация растений и животных, условия появления плодовитого потомства

Гибриды полученные путем отдаленной гибридизации бесплодны так как у них

Отдаленная гибридизация — это такое скрещивание, при котором выбранные пары относятся к разным видам или родам, то есть отдаленные друг от друга не географически, а родственно.

Цель отдаленной гибридизации заключается в получении особей, которые сочетают в себе ценные признаки и свойства различных видов. Проводят гибридизацию, как растений, так и животных. Она играет особую роль в эволюции и селекции.

Отдаленная гибридизация растений

Выделяют два вида: межвидовая (пшеница мягких сортов и твердых) и межродовая (пшеница и рожь).

Селекционер в процессе получения гибридов постоянно сталкивается с рядом проблем. Основные из них:

  • Трудности в скрещивании генетически разных видов;
  • полученные гибридные семена не всходят;
  • гибриды первого поколение бесплодны.

Причины возникновения такого рода проблем:

  • Пыльца не приживается на рыльце другого сорта растений;
  • пыльца приживается, но пыльцевые трубки прорастают медленно и не могут достигнуть зародышевого мешка;
  • отсутствие оплодотворения;
  • после успешного оплодотворения, зародыши часто замирают на стадии нескольких клеток;
  • при нормальном развитии зародыша, могут формироваться невсхожие семена;

Причины бесплодия гибридов:

  1. Бесплодие наступает через несоответствие хромосомных наборов, отсутствие конъюгации гомологичных хромосом, нарушение фаз мейоза. Как следствие не возможно образование половых клеток.
  2. Недоразвитость органов размножения. Часто наблюдается неполноценное развитие мужских репродуктивных органов — пыльников; встречается также стерильность женских особей.

Отдаленная гибридизация растений

Условия появления плодовитого потомства:

  1. Скрещивание с одним из родителей. Применяется наиболее часто, имеет высокую эффективность, но следующее потомство получает обратно некоторые признаки родителей.
  2. Скрещивание с представителями первого поколения. При масштабных работах все-таки встречается небольшое количество растений способных к оплодотворению.
  3. Применение колхицина для создания полиплоидных форм. Позволяет удвоить хромосомный набор, что дает возможность клеткам завершить все фазы мейоза.

Отдалённая гибридизация растений необходима для создания устойчивых сортов и с высокой урожайностью. Созданы гибриды подсолнечника, семена которых содержат больше 50% масла и невосприимчивы к ряду заболеваний.

Путем гибридизации получены зимостойкие сорта озимой пшеницы, с высоким содержанием белка (после скрещивания с озимой рожью). Обнаружен дикий вид пшеницы, который невосприимчив к заболеваниям простой пшеницы. Планируется создание новых гибридов для передачи таких ценных свойств.

Картофель постоянно подвергается воздействию фитофторы, нематод, колорадских жуков. Чтобы сделать его устойчивым к неблагоприятным факторам, культурный картофель скрещивают с диким. Такие гибриды также стали скороспелыми, лучше переносят низкую температуру, могут родить два раза в год.

Отдаленная гибридизация животных

Зоотехники используют собственно гибридизацию и межпородную гибридизацию, которая дает потомство способное к скрещиванию и рождению потомства. Истинно гибридные животные очень редко оказываются плодовитыми, что создает много проблем с дальнейшим их разведением.

У животных процесс получения гибридов затруднен из-за ряда факторов:

  • Разное строение репродуктивных органов животных;
  • гибель сперматозоидов в половых путях самки;
  • отсутствие акта слития половых клеток;
  • нарушения развития зиготы на ранних сроках.

Для преодоления возникших преград селекционеры стали использовать искусственное оплодотворение. Но проблемы с бесплодием полученного поколения остаются актуальными до сих пор.

Различают полное бесплодие потомства, когда оба пола бесплодны, и частичное — один пол не способен к размножению. Чаще бесплодны самцы, тогда самок скрещивают с представителями исходного вида.

Но в этом случае утрачивается часть ценных характеристик гибрида.

Отдаленная гибридизация животных встречалась еще в древние времена, примеры таких гибридов: мулы (помесь лошади и осла) и лошаки (результат скрещивания ослицы и жеребца), они отличались выносливостью и силой. Сарлыки — рождены от яков и коров, ценятся за повышенную жирность молока.

Отдаленная гибридизация животных

Гибридные животные, обычно, лучше родительских видов, это проявляется в повышенной работоспособности, продуктивности и т.д.

На фермах пользуются популярностью новые породы свиней, полученные в результате скрещивания домашней свиньи и дикой. Полученный гибрид быстрее приспосабливался к разным условиям жизни, стал ценным источником мяса.

Суть отдаленной гибридизации

Позволяет получить новые породы животных и сорта растения более ценные для человека.

Гибриды лошади с ослом — мулы — отличаются большой выносливостью, крепостью конституции, продолжительностью жизни; гибриды яка с крупным рогатым скотом превосходят сходные виды по массе и способности к откорму; гибриды одногорбого и двугорбого верблюдов превосходят исходные виды по размерам и работоспособности. Поэтому для получения таких гибридов с древних времен проводилось межвидовое скрещивание.

Скрещивание домашних животных с дикими предками дает плодовитое потомство и может быть использовано в целях селекции. М. Ф.

Иванов в результате скрещивания тонкорунных овец с одним из подвидов диких баранов (муфлоном) получил новую породу горного мериноса. Казахский архаромеринос также получен в результате скрещивания тонкорунных овец с диким бараном (архаром).

В результате скрещивания крупного рогатого скота с горбатым скотом (зебу) получены ценные группы молочного скота.

Селекция играет определенную роль в сохранении разнообразия органического мира. Когда в начале XX в. в Европе сохранились лишь единичные экземпляры зубров, то для спасения вида было проведено скрещивание зубров с бизонами.

В настоящее время, возможно, в природе уже исчезла лошадь Пржевальского. Сохранилось несколько групп этих животных в зоопарках и заповеднике Аскания-Нова. Для спасения вида и сохранения гетерозиготности животных проводится обмен отдельными особями между зоопарками СССР, Чехословакии, США.

Проведена гибридизация с домашней лошадью и гибридов — с дикой лошадью.

Оцените, пожалуйста, статью. Мы старались:) (3 5,00 из 5)
Загрузка…

Источник: https://animals-world.ru/otdalennaya-gibridizaciya-2/

Тест по биологии Селекция и биотехнология 10 класс

Гибриды полученные путем отдаленной гибридизации бесплодны так как у них

04.07.2020БиологияТесты10 класс

Тест по биологии Селекция и биотехнология 10 класс. Тест включает два варианта, в каждом по 14 заданий.

Вариант 1

A1. Наука, занимающаяся созданием новых и улучшением существующих пород животных и сортов растений

1) селекция2) агрономия3) биотехнология

4) бионика

А2. Совокупность особей животных, искусственно созданная человеком и характеризующаяся определенными наследственными особенностями, — это

1) сорт2) порода3) популяция

4) вид

А3. Отбор, производимый по генотипу

1) индивидуальный2) естественный3) массовый

4) стихийный

А4. Эффект гетерозиса обусловлен

1) низкой гетерозиготностью гибридов2) переводом генов из гетерозиготного состояния в гомозиготное3) высокой гетерозиготностью гибридов

4) накоплением рецессивных мутаций

A5. В результате полиплоидии у культурных растений происходит

1) кратное увеличение числа хромосом2) изменение последовательности нуклеотидов3) перестройка хромосом

4) изменение последовательности генов в хромосоме

А6. Центром происхождения картофеля является

1) Абиссиния2) Средиземноморье3) Южная Азия

4) Южная Америка

А7. Получение селекционерами полиплоидной пшеницы является примером

1) географической изменчивости2) точковой мутации3) геномной мутации

4) комбинативной изменчивости

А8. Отдаленные гибриды обычно бесплодны, так как:

1) их клетки не делятся митозом2) их хромосомы не вступают в конъюгацию3) их клетки не имеют ядра

4) гаметы родительских форм различаются по размерам

А9. Впервые разработал способы преодоления бесплодия межвидовых гибридов

1) Г.Д. Карпеченко2) К.А. Тимирязев3) Н.В. Цицин

4) Н.И. Вавилов

A10. Выведением новых сортов плодовых растений занимался выдающийся русский селекционер

1) Г.Д. Карпеченко2) Н.И. Вавилов3) И.В. Мичурин

4) А.Н. Северцов

A11. Основной метод в селекционной работе И.В. Ми­чурина

1) получение радиационных мутантов2) отдаленная гибридизация3) искусственный мутагенез

4) получение полиплоидных форм

А12. Процесс первого этапа селекции — это

1) научная селекция2) одомашнивание3) промышленная селекция

4) генетическая инженерия

А13. Биотехнология для развития медицины обеспечивает получение

1) кормового белка2) межвидовых гибридов3) антибиотиков, витаминов и гормонов

4) новых сортов растений и пород животных

B1. Установите последовательность этапов биотехнологического процесса по созданию генетически измененных организмов для получения кормового белка.

А. Введение в бактериальную клетку молекулы ДНК с нужным геномБ. Получение гена, кодирующего нужный признакВ. Использование трансформированных клеток для получения белка

Г. Отбор клеток с дополнительным геном, производящим кормовой белок

(В ответ запишите ряд букв.)

Вариант 2

A1. Главной задачей селекции является

1) изучение строения и жизнедеятельности домашних животных2) выведение новых сортов растений и пород животных3) изучение строения и жизнедеятельности культурных растений

4) изучение жизнедеятельности сельскохозяйственных вредителей

А2. В основе методов селекции животных, растений и микроорганизмов лежит

1) изменение условий окружающей среды2) наследственная изменчивость и искусственный отбор3) наследственная изменчивость и естественный отбор

4) ненаследственная изменчивость и искусственный отбор

А3. Однородная группа растений, искусственно созданная человеком и характеризующаяся определенными признаками, передающимися по наследству, — это

1) сорт2) порода3) популяция

4) вид

А4. Отбор, производимый по фенотипу

1) индивидуальный2) естественный3) массовый

4) гетерозисный

A5. Чистая линия — это потомство, полученное в результате

1) инбридинга2) гетерозиса3) аутбридинга

4) мутагенеза

А6. В селекции при скрещивании чистых линий между собой наблюдается

1) полиплоидия2) гетерозис3) аутбридинг

4) близкородственное скрещивание (инбридинг)

А7. Метод селекции, при котором на организм воздействуют рентгеновскими лучами, — это

1) гибридизация2) гетерозис3) аутбридинг

4) мутагенез

А8. При удвоении числа хромосом путем разрушения колхицином веретена деления в делящейся клетке получаются

1) отдаленные гибриды2) радиационные мутанты3) полиплоиды

4) чистые линии

А9. В селекции животных обычно не используется метод:

1) получения чистых линий2) гибридизации3) получения полиплоидов

4) инбридинга

A10. Центры происхождения культурных растений установил

1) Г.Д. Карпеченко2) Н.И. Вавилов3) И.В. Мичурин

4) А.Н. Северцов

A11. Центром происхождения твердой пшеницы является:

1) Абиссиния2) Средиземноморье3) Южная Азия

4) Центральная Америка

А12. Отрасль хозяйства, которая производит различные вещества, используя микроорганизмы, клетки и ткани организмов

1) эмбриология2) Физиология3) микробиология

4) биотехнология

А13. В биотехнологии чаще всего используются

1) вирусы2) бактерии и грибы3) одноклеточные водоросли

4) животные

В1. Установите правильную последовательность действий селекционера по выведению нового сорта.

А. Скрещивание исходного материалаБ. Индивидуальный или массовый отбор гибридовВ. Подбор исходного материала

Г. Размножение гибридных особей

(В ответ запишите ряд букв.)

Ответы на тест по биологии Селекция и биотехнология 10 класс
Вариант 1А1-1А2-2А3-1А4-3А5-1А6-4А7-3А8-2А9-1А10-3А11-2А12-2А13-3В1. БАГВ

Вариант 2

А1-2А2-2А3-1А4-3А5-1А6-2А7-4А8-3А9-3А10-2А11-1А12-4А13-2

В1. ВАГБ

PDF версия для печатиТест Селекция и биотехнология 10 класс

(80 Кб)

: 06.03.2020 04.07.2020

Источник: https://biologyedu.ru/2020/03/06/test-po-biologii-selekcziya-i-biotehnologiya-10-klass/

Самая удобная и увлекательная подготовка к ЕГЭ

Гибриды полученные путем отдаленной гибридизации бесплодны так как у них

Селекция — отбор и создание новых сортов растений, пород животных и штаммов микроорганизмов с нужными человеку свойствами.

Породы животных, сорта растений, штаммы микроорганизмов — это совокупности особей, созданные человеком и обладающие какими-либо ценными для него качествами. Теоретической основой селекции является генетика.

Отбор

В селекции действует естественный и искусственный отбор. Искусственный отбор бывает бессознательным и методическим.

Бессознательный отбор заключается в сохранении человеком лучших особей для разведения и употреблении в пищу худших без сознательного намерения вывести более совершенную породу или сорт. Методический отбор осознанно направлен на выведение нового сорта или породы с желаемыми качествами.

В процессе селекции наряду с искусственным отбором не прекращает своего действия и естественный отбор, который повышает приспособляемость организмов к условиям окружающей среды.

Сравнительная характеристика естественного и искусственного отбора

ПоказателиЕстественный отборИскусственный отбор
Исходный материал для отбораИндивидуальные признаки организмовИндивидуальные признаки организмов
Отбирающий факторУсловия среды (живая и неживая природа)Человек
Путь благоприятных измененийОстаются, накапливаются, передаются по наследствуОтбираются, становятся производительными
Путь неблагоприятных измененийУничтожаются в борьбе за существаниеОтбираются, бракуются, уничтожаются
Направленность действияОтбор признаков, полезных особи, популяции, видуОтбор признаков, полезных человеку
Результат отбораНовые видыНовые сорта растений, породы животных, штаммы микроорганизмов
Формы отбораДвижущий, стабилизирующий, дизруптивныйМассовый, индивидуальный, бессознательный (стихийный), методический (сознательный)

Массовый отбор — выделение из исходного материала целой группы особей с желательными признаками и получение от них потомства.
Индивидуальный отбор — выделение отдельных особей с желательными признаками и получение от них потомства.

Массовый отбор чаще применяют в селекции растений, а индивидуальный — в селекции животных, что связано с особенностями размножения растений и животных.

Гибридизация

Методом отбора нельзя получить новые генотипы. Для создания новых благоприятных комбинаций признаков (генотипов) применяют гибридизацию. Различают внутривидовую и межвидовую (отдалённую) гибридизацию.

Внутривидовая гибридизация — скрещивание особей одного вида. Применяют близкородственное скрещивание и скрещивание неродственных особей.

Близкородственное скрещивание (инбридинг) (например, самоопыление у растений) ведёт к повышению гомозиготности, что, с одной стороны, способствует закреплению наследственных свойств, но с другой — ведёт к снижению жизнеспособности, продуктивности и вырождению.

Скрещивание неродственных особей (аутбридинг) позволяет получить гетерозисные гибриды. Если сначала вывести гомозиготные линии, закрепив желательные признаки, а затем провести перекрёстное опыление между разными самоопыляющимися линиями, то в результате в ряде случаев появляются высокоурожайные гибриды.

Явление повышенной урожайности и жизнеспособности у гибридов первого поколения, полученных при скрещивании родителей чистых линий, называется гетерозисом. Основная причина эффекта гетерозиса — отсутствие проявления вредных рецессивных аллелей в гетерозиготном состоянии.

Однако уже со второго поколения эффект гетерозиса быстро снижается.

Межвидовая (отдалённая) гибридизация — скрещивание разных видов.

Используется для получения гибридов, сочетающих ценные свойства родительских форм (тритикале — гибрид пшеницы и ржи, мул — гибрид кобылы с ослом, лошак — гибрид коня с ослицей).

Обычно отдалённые гибриды бесплодны, так как хромосомы родительских видов отличаются настолько, что невозможен процесс конъюгации, в результате чего нарушается мейоз. Преодолеть бесплодие у отдалённых гибридов растений удаётся с помощью полиплоидии.

Восстановление плодовитости у гибридов животных более сложная задача, так как получение полиплоидов у животных невозможно.

Полиплоидия

Полиплоидия — увеличение числа хромосомных наборов.

Полиплоидия позволяет избежать бесплодия межвидовых гибридов. Кроме того, многие полиплоидные сорта культурных растений (пшеница, картофель) имеют более высокую урожайность, чем родственные диплоидные виды.

В основе явления полиплоидии лежат три причины: удвоение хромосом в неделящихся клетках, слияние соматических клеток или их ядер, нарушение процесса мейоза с образованием гамет с нередуцированным (двойным) набором хромосом. Искусственно полиплоидию вызывают обработкой семян или проростков растений колхицином.

Колхицин разрушает нити веретена деления и препятствует расхождению гомологичных хромосом в процессе мейоза.

Индуцированный мутагенез

В естественных условиях частота возникновения мутаций сравнительно невелика.

Поэтому в селекции используется индуцированный (искусственно вызванный) мутагенез — воздействие на организм в условиях эксперимента каким-либо мутагенным фактором для возникновения мутации с целью изучения влияния фактора на живой организм или получения нового признака. Мутации носят ненаправленный характер, поэтому селекционер сам отбирает организмы с новыми полезными свойствами.

Клеточная и генная инженерия

Биотехнология — методы и приёмы получения полезных для человека продуктов и явлений с помощью живых организмов (бактерий, дрожжей и др.). Биотехнология открывает новые возможности для селекции. Её основные направления: микробиологический синтез, генная и клеточная инженерия.

Микробиологический синтез — использование микроорганизмов для получения белков, ферментов, органических кислот, лекарственных препаратов и других веществ. Благодаря селекции удалось вывести микроорганизмы, которые вырабатывают нужные человеку вещества в количествах, в десятки, сотни и тысячи раз превышающих потребности самих микроорганизмов.

С помощью микроорганизмов получают лизин (аминокислоту, не образующуюся в организме животных; её добавляют в растительную пищу), органические кислоты (уксусную, лимонную, молочную и др.), витамины, антибиотики и т. д.
Клеточная инженерия — выращивание клеток вне организма на специальных питательных средах, где они растут и размножаются, образуя культуру ткани.

Из клеток животных нельзя вырастить организм, а из растительных клеток можно. Так получают и размножают ценные сорта растений. Клеточная инженерия позволяет проводить гибридизацию (слияние) как половых, так и соматических клеток. Гибридизация половых клеток позволяет проводить оплодотворение «в пробирке» и имплантацию оплодотворённой яйцеклетки в материнский организм.

Гибридизация соматических клеток делает возможным создание новых сортов растений, обладающих полезными признаками и устойчивых к неблагоприятным факторам внешней среды.
Генная инженерия — искусственная перестройка генома. Позволяет встраивать в геном организма одного вида гены другого вида.

Так, введя в генотип кишечной палочки соответствующий ген человека, получают гормон инсулин. В настоящее время человечество вступило в эпоху конструирования генотипов клеток.

Селекция растений Для селекционера очень важно знать свойства исходного материала, используемого в селекции. В этом плане очень важны два достижения отечественного селекционера Н. И. Вавилова: закон гомологических рядов в наследственной изменчивости и учение о центрах происхождения культурных растений.

Закон гомологических рядов в наследственной изменчивости: виды и роды, генетически близкие (связанные друг с другом единством происхождения), характеризуются сходными рядами в наследственной изменчивости. Так, например, у мягкой и твёрдой пшеницы и ячменя существуют остистые, короткоостые и безостые колосья.

Зная наследственные изменения у одного вида, можно предвидеть нахождение сходных изменений у родственных видов и родов, что используется в селекции. Чем ближе между собой виды и роды, тем больше сходство в изменчивости их признаков. Н. И.

Вавиловым закон был сформулирован применительно к растениям, а позднее подтверждён для животных и микроорганизмов.
В селекции растений наиболее широко используются такие методы, как массовый отбор, внутривидовая гибридизация, отдалённая гибридизация, полиплоидия.

Большой вклад в селекцию плодовых растений внёс отечественный селекционер И. В. Мичурин. На основе методов межсортовой и межвидовой гибридизации, отбора и воздействия условиями среды им были созданы многие сорта плодовых культур.

Благодаря его работам многие южные сорта плодовых культур удалось распространить в средней полосе нашей страны. Многие сорта культурных растений являются полиплоидными. Таковы некоторые сорта пшеницы, ржи, клевера, картофеля, свёклы и т. д.

Сочетание отдалённой гибридизации с последующим получением полиплоидных форм позволило преодолеть бесплодие отдалённых гибридов. В результате многолетних работ Н. В. Цицина и его сотрудников были получены гибриды пырея и пшеницы, пшеницы и ржи (тритикале).

К наиболее важным достижениям селекции растений следует отнести создание большого количества высокопродуктивных сортов сельскохозяйственных растений.

Селекция животных

Как и культурные растения, домашние животные имеют диких предков. Процесс превращения диких животных в домашних называют одомашниванием (доместикацией). Почти все домашние животные относятся к высшим позвоночным животным — птицам и млекопитающим.

В селекции животных наиболее широко используются такие методы, как индивидуальный отбор, внутривидовая гибридизация (родственное и неродственное скрещивание) и отдалённая (межвидовая) гибридизация. Использование индивидуального отбора связано с половым размножением животных, когда получить сразу много потомков затруднительно.

В связи с этим селекционеру важно определить наследственные признаки самцов, которые непосредственно у них не проявляются (жирномолочность, яйценоскость). Поэтому оценка животных может быть осуществлена по их родословной и по качеству их потомства. Имеет определённое значение также учёт экстерьера, то есть совокупности внешних признаков животного.

Подбор производителей в животноводстве особенно актуален в связи с применением в настоящее время искусственного осеменения, позволяющего получить от одного организма значительное число потомков. Родственное скрещивание ведёт к гомозиготности и чаще всего сопровождается уменьшением устойчивости животных к неблагоприятным факторам среды, снижением плодовитости и т. п.

Для устранения неблагоприятных последствий используют неродственное скрещивание разных линий и пород. На основе межпородного скрещивания были созданы высокопродуктивные сельскохозяйственные животные (в частности М. Ф. Иванов создал высокопродуктивную породу свиней Белая украинская, породу овец Асканийская рамбулье).

Неродственное скрещивание сопровождается гетерозисом, сущность которого состоит в том, что гибриды первого поколения имеют повышенную жизнеспособность и усиленное развитие. Примером эффективного использования гетерозиса служит выведение гибридных цыплят (бройлерное производство).

Отдалённая (межвидовая) гибридизация животных приводит к бесплодию гибридов.

Но благодаря проявлению гетерозиса широко используется человеком. Среди достижений по отдалённой гибридизации животных следует отметить мула — гибрида кобылы с ослом, бестера — гибрида белуги и стерляди, продуктивного гибрида карпа и карася, гибридов крупного рогатого скота с яками и зебу, отдалённых гибридов свиней и т. д.

Селекция микроорганизмов

К микроорганизмам относятся прокариоты — бактерии, сине-зелёные водоросли; эукариоты — грибы, микроскопические водоросли, простейшие.
В селекции микроорганизмов наиболее широко используются индуцированный мутагенез и последующий отбор групп генетически идентичных клеток (клонов), методы клеточной и генной инженерии.

Деятельность микроорганизмов используют в промышленности, сельском хозяйстве, медицине. Ферментативную активность микроорганизмов (грибов и бактерий) используют в производстве молочных продуктов, хлебопечении, виноделии и др. С помощью микроорганизмов получают аминокислоты, белки, ферменты, спирты, полисахариды, антибиотики, витамины, гормоны, интерферон и пр.

Выведены штаммы бактерий, способные разрушать нефтепродукты, что позволит использовать их для очистки окружающей среды. Ведутся работы по перенесению генетического материала азотфиксирующих микроорганизмов в геном почвенных бактерий, которые этими генами не обладают, а также непосредственно в геном растений.

Это позволит избавиться от необходимости производить огромное количество азотных удобрений.

Источник: https://examer.ru/ege_po_biologii/teoriya/selekcii_biotehnologiya

Поделиться:
Нет комментариев

    Добавить комментарий

    Ваш e-mail не будет опубликован. Все поля обязательны для заполнения.